Showing posts with label Health. Show all posts
Showing posts with label Health. Show all posts

Monday, March 5, 2012

Crowd-data can find drug and vaccine side effects

The social crowd has proven to be powerful, if you can find some way to harness it: crowd-sourcing can perform tasks and solve collaborative problems, crowd-funding can raise substantial financing.

I suspect crowd-data will similarly become an effective way to create large, realistic databases.

A great application of this is the medical world, where many people post to health forums raising medical problems, possible side effects from drugs and vaccines, etc. Why not collect all such posts to find previously undiscovered problems? In fact, this paper describes just that: the authors extracted the nasty side effects of statin drugs based on posts to online health forums. Similarly, this abstract describes a system that used crowd-data to spot nasty side effects from Singulair, years before the FDA issued a warning. The VAERS database, which gathers parent-reported problems after children receive vaccines, is another example.

Unfortunately the drug safety trials that take place before a drug can be released are not especially trustworthy. Here's a scary quote from that interview:

    When you look at the highest quality medical studies, the odds that a study will favor the use of a new drug are 5.3 times higher for commercially funded studies than for noncommercially funded studies.

And that was 7 years ago! I imagine the situation has only gotten worse.

When a new drug is released, the true, unbiased drug trial begins when millions of guinea-pigs start taking taking it. Crowd-data makes it possible to draw conclusions from that that post-market drug trial.

Of course there are challenging tradeoffs: crowd-data, being derived from "ordinary people" without any rigorous standard collection process, can be dirty, incomplete and reflect sampling bias (only people experiencing nasty side effects speak up). For these reasons, old-fashioned journals turn their noses up at papers drawing conclusions from crowd-data.

Nevertheless, I believe such limitations are more than offset by the real-time nature and shear scale the millions of people, constantly posting information over time. Inevitably, trustworthy patterns will emerge over the noise. Unlike the synthetic drug trial, this data is as real as you can get: sure, perhaps the drug seemed fine in the carefully controlled pre-market testing, but then out in the real world, unexpected interactions can suddenly emerge. Crowd-data will enable us to find such cases quickly and reliably, as long as we still have enough willing guinea-pigs!

Fast forward a few years and I expect crowd-data will be an excellent means of drawing conclusions, and will prove more reliable than the company-funded pre-market drug trials.

Wednesday, November 3, 2010

Big Fat Fiasco

I just watched this talk by Tom Naughton, describing the mis-steps and bad science over the years that have tricked us all into believing we should avoid fat and cholesterol in our diet when in fact we should be doing the exact opposite!

Tom is an excellent speaker (he's a comedian!), mixing in humor in what is at heart a very sad topic. He details the science that should have led us to conclude that excessive carbs and sugar consumption are in fact the root cause behind heart disease, diabetes and obesity, not fat and cholesterol as we've been incessantly told over the years.

He shows how the "Fat Lazy Slob Theory" (also called "calories in minus calories out") so frequently put forth to explain weight gain is in fact wrong, and that instead the root cause is the biochemistry in your body driving you to eat when your blood sugar is too high.

Tom's documentary movie Fat Head, which is getting great reviews on Amazon, delves into these same topics. I haven't watched it yet but I plan to.

So enjoy your butter, cheese, whole milk, eggs (with yolk!!) and cut back on sugars and carbs. And don't drink soda!

Monday, October 25, 2010

Our medical system is a house of cards

I just came across this great article about meta-researcher Dr. John Ioannidis. Here's the summary:

Much of what medical researchers conclude in their studies is misleading, exaggerated, or flat-out wrong. So why are doctors—to a striking extent—still drawing upon misinformation in their everyday practice? Dr. John Ioannidis has spent his career challenging his peers by exposing their bad science.

The gist is that modern medical research is deeply flawed and biased such that the "conclusions" that you and I eventually read in the news headlines are often false. I especially love his advice for us all:

Ioannidis suggests a simple approach: ignore them all

This is in fact my approach! I have a simple rule: if it tastes good it's good for you. So I eat plenty of fat, salt, sugar, cholesterol, carbs, etc. I love eggs and cheese and I always avoid low-fat or low-cholesterol foods. I get lots of sun and never use sun screen. I drink coffee and beer, daily. I drink lots of water. I get daily exercise, running and walking. And I avoid hand sanitizers like Purell (I believe commonplace dirt/germs are in fact natural and good for you). I strongly believe humans do not need pills to stay healthy. I don't take a daily vitamin. And I'm very healthy!

This short interview between Discover Magazine and Harvard clinician John Abramson echoes the same core problem. Here's a choice quote:

When you look at the highest quality medical studies, the odds that a study will favor the use of a new drug are 5.3 times higher for commercially funded studies than for noncommercially funded studies.

Unfortunately, the medical world has a deep, deep conflict of interest: healthy people do not generate profits. Capitalism is a horrible match to health care.

So, next time your doctor prescribes a fancy new cool-sounding powerful drug like Alevia or Omosia or Nanotomopia or whatever, try to remember that our medical system is really built on a house of cards. Your doctor, let alone you, cannot possibly differentiate what's true from what's false. Don't trust that large triple-blind random controlled trial that supposedly validated this cool new drug. You are the guinea pig! And it's only when these drugs cause all sorts of problems once they are really tested on the population at large that their true colors are revealed.